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Conservative Numerical Methods for X = f(x)
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Two distinctly different numerical methods are developed for solving the conservative initial
value problem X = f(x), x(0)=ea, ¥(0)=pf. Both methods conserve exactly the same total
energy as does the given differential equation. Computer examples are described and
discussed.

1. INTRODUCTION

Physics is characterized by conservation laws and by symmetry [1}. Unfor-
tunately, the application of numerical methodology in approximating solutions of
initial value problems usually does nof preserve either of these invariants. In this
sense, the use of a computer destroys the physics of a dynamical model.

We will show here how to conserve total energy when solving the nonlinear initial
value problem

X=f(x); x(0)=a,x(0)=4 (L.1)

on a computer. Moreover, the energy conserved will be exactly that of (1.1), not a
new “energy” which is defined by the numerical method (see, e.g., Langdon [6]).
Two distinctly different methods will be developed, one of which is completely
conservative and symmetric, the other of which reveals how to convert any numerical
method to an energy conserving one.

2. PRELIMINARY CONSIDERATIONS

For purposes of intuition and for later convenience in demonstrating structural
analogies, let us recall first the proof that (1.1) conserves energy.

Let particle P of unit mass be in motion along the X axis. Let the Newtonian
dynamical equation of motion and the initial data be given by (1.1). At any time
t=1t*, let P be located at x(¢*)=x* and have velocity X%(t*)=v(t*)= v*. Define
the work W done by force f(x) during the time 0 < ¢ ¢* by

W= f: £(x) dx. @.1)

28
0021-9991/84 $3.00

Copyright © 1984 by Academic Press, Inc.
All rights of reproduction in any form reserved.



N
O

CONSERVATIVE NUMERICAL METHODS

Then,

K

() di = 3((*))* — 3[(0)]7

Iy

!

so that
W=K(w*)—K(B), {2.2)
where K is kinetic energy. Of course, (2.2) is valid for any f(x).
Now, for a particular f(x), let ¢(x) be any function such that
d .
—d—ﬁzf(x). (2.3
The function ¢(x) is called a potential function for f(x). Then, from (2.1) and (2.3),
W=—g(x*)+ o(a). (2.4)
in which ¢ is now called the potential energy.
Elimination of W between (2.2) and (2.4) yields

K(©*) 4 6(x*) = K(B) + d(a) (2.

[ o]
wh
e’

which is the classical law of conservation of energy.

3. NUMERICAL METHOD I

The first numerical method is developed from the following observation. Conser-
vation law (2.5) contains ¢(x) explicitly, but not f(x). Thus, if a numerical method is
to conserve exactly K(f) + ¢(a), the method should incorporate exactly the same
potential function ¢ as defined in Section 2. Indeed, it need not utilize exactly the
same f(x) given in (1.1). With this in mind, we proceed as follows.

For 4t > 0 and ¢, = k At, k =0, 1, 2,..., let x{t,) = x,, v(t,) = vy, a(t,) = a,. Let
¢(x) satisfy (2.3). Then, assume
Uppt Tl Xpp1 — X

= 3.1
2 At

Uk — Uk (395
akz—izt——". \32}
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Define f(x,) = f by
) — 9(x,)

Jo=——"7"T—""—, Xiy1 F Xy
Xer1— Xk

44

- >
OX |y_x,

(3.3)

X1 =X

and approximate dynamical equation (1.1) by
Su=may,
which, by the assumption of unit mass, reduces to
fi=ay. (3.4)

Let us proceed now as if x,,, #x, in (3.3). Whenever necessary, we will show
how to treat the case x,, = x,. Hence, (3.1)-(3.4) are equivalent to

Vst T Uk Xpeq 1 — X
2 At (3:5)
Yke1 — YV _ O(Xi 1) — 8(xy) (3.6)
At Xew1 ™ Xg . .

Equations (3.5), (3.6) define x,, ,, v, , implicitly in terms of x,, v,. The solution of
(3.5), (3.6) for each of k=1, 2,..., from the initial data x, = a, v, = f, constitutes the
numerical solution.

Let us show first that (3.1)-(3.4) conserve exactly the same energy as given in
(2.5). In analogy with (2.1), let

n—1
w,= 2 Cerp 1 — X5) Sr- (3.7)
k=0
Then
n—1 n—1 Uk+1—vk
W= T (=5 a= ¥ ey =) (222 2)
k=o k=0
n—1 n—1
(Xpi1—X) g1+ 0
= 2 '—%‘k_(vkﬂ_vk): Z 'H*lz_k) (Wkp1— i)
k=0 k=0
n—1
=1 2 (UI%H_Ui):K(Un)_K(Uo)'
k=0
Thus,

W,=K(,)— K@), (3.8)

in analogy with (2.2).
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On the other hand, (3.7) implies

n-1 ; ;
P(Xhs 1) — 90xi)
W, = S (Xep1— Xe) (‘“ :H —x :
k=0 Xy — X

2 (s 1) + 9(x)

=—(x,) + #(x0),

so that
I/Vn = _¢(xn) + ¢(C(), (39>

in complete analogy with (2.4).
Elimination of W, between (3.8) and (3.9) implies the energy conservation law

K@,) + ¢(x,) = K(B) + o(a), n=0,1,2,3... (3.10)

Since the right sides of (2.5) and (3.10) are identical, it follows that the numericai
method conserves exactly the same total energy as does (1.1).

In the case when x,,, = x,, then ¢(x,, ) —¢(x,) =0, so that there would be no
change in the final summation which led to (3.9). Use of the second formula in (3.3)
to calculate W, would have required the alternative expression

. og
(CP xk)ax x:xk’
which also is zero, yielding again no change in the final summation. Thus, conser-
vation law (3.10) is valid in all cases.

Let us show next how to solve (3.5), (3.6) iteratively by means of Newton’s

method [2]. For fixed &, if (3.5) and (3.6) are rewritten as

At
xk+l:xk+7(vk+l + ) {3.5"}
X —¢(Ue)\
U[(+1:Uk—_(At)(¢( /erl) ¢( k))’ (36!\'
Xw1 ™ X
then the Newtonian recursion formulas to be used are
- +£1£(U(n) +o,) (3.11)
Xg oy Tt 5 Whey k
x(n+l) — alx
U;(n++ll):Uk_(At) ¢( k+1 ) ¢( k)5 (312)

(n+1) __
Xk+1 Lk

581/36/1-3
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with the initial choice x{? , v{%), for the iteration taken to be

xi=x+C, o =v+C,, (3.13)

in which C,, C, are constants. If the division by (x{"," —x,) in (3.12) can be, and

has been, carried out, then the singularity x,,, = x, in (3.6') has been removed, in
which case we will always choose C;, =C,=0 in (3.13). This will be illustrated in
Example L. If the division by (x{"}"’ —x,) in (3.12) cannot be carried out, but still
x{"* Y # x,, then one must choose C;#0 in (3.13). This will be illustrated in
Example 2.

We now give two examples which not only illustrate the method, but also show
clearly that convergence.is always to the correct physical solution, even when system
(3.5), (3.6) has more than one solution.

ExampLE 1. Consider the initial value problem

X=x2 x(0)=1, x(0)= 1. (3.14)
Choosing
x3
60) =~ (3.15)
and noting that
1 . oxs 1 1 1
E:— Jg —— = — — — = — 31
2T T T3 T e (3-16)
we find that
Xy 1) — 0(x 1
_M:_(xi+l+xk+1xk+_xi), (317)
X1 — Xk 3

so that the system to be solved is

At
xk+1=xk+7(vk+1 +0y) (3.18)
a  , 2
vk+1=vk+?(x,;+l+xk+1xk+x,;). (3.19)

The Newtonian iteration formulas, for fixed k, are then

dar
x5 =, +‘2‘(v;<+)1 +vy) (3:20)
(n+1) At {(n+1)\2 L(n+1) . 2
Ugin =Uk+‘3‘[(xk+1 P+ G + )’ (3.21)

oy __ 0) __
X1 = Xk Upiy = Ug. (322)
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In applying (3.20)—(3.22), it will be convenient to know, a priori, how many
solutions system (3.18), (3.19) has. For this purpose, note that substitution of {3.19)
into (3.18), to eliminate v, , ,, yields the quadratic equation

' 6 5 6 6
X1+ X1 (xk_w) + (X;}-i—-(j!)—zxk—i-zvk) =0. (3.23

Since x, =1, vy =1 are known, let us, for simplicity, consider (3.23) with k = 0. An
analogous discussion holds for arbitrary k. Hence, k£ = 0, (3.23) reduces to

@—6[)—2>x1+(1+ (Ai), + 6) =0, (3.24)

Equation (3.24) has 0, 1, or 2 solutions according as the discriminant D(4¢) is less
than, equal to. or greater than zero, where

x%+(1—

v 2

D(dr) = (1—(76[)2—)'—4 (1 + (A(;)Z T 6') (3.25)

Since lim,, ,, D() = co, there exist two solutions for all sufficiently small 4¢. To be
precise, let us solve D(4t) =0. This equation is equivalent to the quadratic equation

(4e)* + 8(dt)’ + 12(4r)* — 12 =0. (3.26)

Equation (3.26) has exactly one real, positive root 4:, and this is the only physically
correct solution of (3.26). This solution is

/8 V256 + V(8 — /256) + 4(8/V/8 — V256 + (4 + /256)/2)

~ 0.79490525. (3.27)

Ar=-2 +

For At less than that prescribed by (3.27), Eq. (3.24) has two real roots, and these are
given by

_ (6 (n)) + V(D) — 6)° — 4(d1)*((d1)* + 641 + 6)
' 2(Ar)?

(3.28)

If one chooses the positive sign in (3.28), then lim,,_, x, = + 00, which is incorrect
physically. So, one must choose the negative sign to get the correct root. For
4t =0.01, the correct physical approximation, to five decimal places, is

x, ~ 1.01005, 3.29)

o~

while the incorrect solution is x, ~ 59998.
Table I shows the computer solutions of (3.18), (3.19) by use of (3.20), (3.21) with
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TABLE I

Lnergy

1.0000000000
1,0100505042
1.0202030372
1.03045946403
1.0408224772
1.0512934345
1.0618753232
1,0725697795
1.0833792864
1.0943061747
1.1053528241
1.1165216650
1.1278151790
1.1392359012
1.1507864211
1.1624693840
1.1742874929
1.1862435097
1.1983402570
1.2105806199
1.2229675471
1.2355040537
1.2481932220
1.2410382042
1.2740422236
1.2872085775
1.3005406384
1,3140418570
1.3277157637
1.3415659713
1.3555961773
1.3698101666
1.3842118136
1.3988050850
1.4135940429
1.4285828471
1.4437757584
1.4591771414
1.47479144677
1.4906233193
1.5066773917
1.5229584974
1.5394715704
1.5562216480
1.5732139764
1.5904538143
1.6079466368
1.46256980396
1.6437137639
1.6619997010
1.68054618946

1.0000000000
1.0101008418
1.0204057513
1,0309188827
1.0416444964
1,0525869623
1,0437507632
1.0751404983
1.0867608866
1.0986167710
1.1107131220
1.1230550415
1.1356477675
1.1484966777
1.1616072945
1.1749852893
1.1886344874
1.2025668731
1.2147825944
1.2312899487
1.2460954883
1.2612058258
1.2766278403
1.29234685837
1.3084353066
1.3248354652
1.3415767283
1.35866469843
1,3761143484
1.3939271707
1.4121140439
1.4306838114
1.44946455771
1.4690087122
1.4887828666
1.5089779775
1.5296042798
1.5506723163
1.572192949¢
1.5941773700
1.6166371137
1.6395840686
1.6630304906
1.6869890160
1.7114726753
1.7364949077
1.7620695763
1.7882109836
1.8149338879
1.8422535203
1.8701856026

0.1666487
0166667
0.1666467
0.166667
0.16666467
0.166667
0.166647
01666467
0.166667
0166667
0166667
0.,168667
0.166667
0.166667
0.166667
0.166667
0.166667
0.166667
0.,164667
0.166667
0.16646467
0.166667
0.166667
0.1664667
04166467
0.,166667
0.166667
0.1666467
0.166667
0.166667
0.164667
0.166667
0.1866667
0166667
0.166667
0.1466667
0.1866667
0.1866667
0.166667
0.166667
0.166667
0166667
0.166667
0.,166667
0.166667
0.166667
0.166667
0.166687
0.1664667
0166667
0.166667




CONSERVATIVE NUMERICAL METHODS 35

Ar=0.01 up to k = 50, which are typical of the more extensive computations carried
out. Note that, to ten decimal places,

x, ~ 1.0100505042, (2.30)

which is in complete agreement with (3.29). Indeed, for each &, the computer method
converges to the correct physical solution, even though two solutions exist. Note also
in Table I that the total energy is always constant and equal to + (to the number of
decimal places printed).

For the interested reader, the FORTRAN program used is available in Appendix A
of Greenspan [3].

ExaMpLE 2. Consider the initial value problem

%= —sin x, x(0)=%, ¥(0) =0, (3.31)

for which
¢(x)= —cos x
=1pl —cos x,=0.
The system to be solved for each k is
At o
xk+1:xk+7(vk+; ‘I’l—‘k) (sz}
cos(x,, ;) — COS X,
Vi1 = Ug + (A1) . (3.33)

Kir1 ™ X

This time, unlike Example 1, the singularity x,, ; = x, in (3.33) is not removable by
division. The iteration formulas to be used are, then,

At .

(m+1) _ (n , p
Xigs1 =X+ ) WY+ v (3.34)
(n+1) -

cos(x )—cos x
1 k+1 k \
U;nfl = vy + (42) i+ D) (3.35)
Xer1 — %
~(0 N
X =x,+ 1, e =+ L {3.36)

With 4t =0.01, the method converges to the correct physical solution and Table I
gives the resulting positions, velocities, and energies through & = 50, which are
typical of the more extensive calculations which were carried out. Note, again, that
the energy is conserved exactly.
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TABLE 1I
X v Lnergy
1.5707963268 0.0000000000  G,000000
1.5707463268 =0.0100000000 0.000000
1.5705963268 ~0,0199999999 ©0.000000
1.5703463268 ~0.02999997994 0.000000
1.5699963268 ~$,0399999974  $.000000
1.5695463269 -0,0499999920 0.000000
1,5689963270 ~0.0599999803 0.000000
1,5683463273 ~0.,0699999575  0.000000
1.5675963279 -0.0799999174 0.000000
1.56674632%1 -0.08%9998514 0.000000
1.95657963311 ~-0.09999974846 0.000000
1.56474463344 ~0.1099995955 0.000000
1,56359633%95 —0.1199993755 0.000000
1.5623463473 -0.1299990687 0.000000
1.5609963587 ~0,1399986516 0.000000
1.5595463750 -0.1499980969 0.000000
1.5579963976 -0,1999973729 0.000000
1.5563464285 -0,14699964435  (0.006000
1.35545964700 -0,1799952681  0,000000
1.5527465246 -0.1899938004 0,000000
1.5507965957 -0.1999919892 0.,060000
1.5487466848 -0.,2099897773  0.000000
1.5465968025 —0.2199871018 0.000000
1.54434469475 ~0,229983B932 0.000000
1.5419971276 —-0.2399800756 0.000000
1.5395473494 ~0.2499755662 0.000000
1.5369976202 ~0.2599702750 0.,000000
1.5343477483 ~0.2699641044 0.000000
1.5315983431 ~0.2799569491  0.000000
1.5287488148 ~0.2897486958 0.000000
1.53257993752 -0.2999392228 0.000000
1.5227500371 ~0.,30992839%56 0.,000000
1.5196008147 -0.3199160868 0.000000
1.91635172346 ~-0.,3299021358 0.000000
1.5130027810 ~0.,3398863886 0.000000
1.5090540054 -0.3498686769 0.000000
1.5060054181 -0.3598488228 0.000000
1.5023570408 -0.3698266376 0.000000
1.4986088980 ~0.3798019221 (0.,000000
1.4947610161 ~0,38977446460 0.000000
1.4908134235 ~0.3997440479 0.000000
1.4867661511 ~-0.,4097104346 0.000000
1.4826192320 ~0,4196733811  0.000000
1.4783727020 -0.4296326306 0.000000
1.4740265993 ~0,4395879134 0.000000
1.,4695809649 ~0,4495389476 0.000000
1.4650358430 -0.4574854381 0.000000
1,4603912804 -0.46942707466 0.000000
1.45546473274 ~0.4793635413  0.000000
1.4508040372 ~0.4892944969 0.000000
1.4458614667 ~0.4992195939 0.000000
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4. MetHOD 11

We will show now how to convert any popular numerical method for solving {1.1}
so that it is energy conserving. For illustrative purposes, consider a Taylor series
method |5}, say, for simplicity, of second order,

an? .
X=X+ D)o+ (2) Xy 4.1

. (ary
Vg1 = U+ A X+ )

%, (4.2)

The error in each of (4.1) and (4.2) is of order (4¢)’. We first modify these sc that
(4.1) has an error of order (4¢)*. Thus,

2 A3
(dny” . N e v

xk+1:xk+(é1[) Uk+ 2 Xy 6 & (43)
., @t ,
l‘kH:L‘k-i-(Al‘)x,(-i- ( 2) Xy !\4,4;

Each final terms in (4.3) and (4.4) now has the same derivative of x, that is. ¥,.
Finally, we modify (4.3) and (4.4) by introducing a parameter ¢, where

g= 1+ O(dr). (4.5)
in such a fashion that we have

At)* A1) . o
( 2) X+ ( 6) e, (4.6)

an*

X =%+ () v+

Uy = U + (40) X +

£, 4.7

Our problem now reduces to the determination of £ so that E is invariant. Let us
show how easily this is done by considering, again, Example 1 of Section 3.
Consider the initial value problem

¥=x2 x(0)=1, x(0)= L. (4.8)
For this problem, formulas (4.6) and (4.7) reduce to

()’ 2 (4t)’

Xeo1 =X+ () v, + 7 kt 3

EX, Uy (4.9}

Vpo1 = U + (48) x5 + (40)? ex, v, (4.10)
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We will determine ¢ so that the change in energy, 4E,=E,, , — E,, is always zero.
Thus, since

dE, =E, , —E;
=% OFe1— 02) + BCxesr) — 6(x0)

1 x} x;
— 5 OFr—od) + (T ),

substitution of (4.9) and (4.10) and setting AE, = 0 yields

3[(de) xi + (40)*e*xivf + 2x3v, + 2(48) ex,v; + 2(41) exiv, ]
k

: A1)
-2 |:3’Ck (Uk—l_? —("3—8ka7k>
4
+ 3x, At (uk +—= > x T)avckvk
Aty xp  (de)? ’
+ (41)? <17k+ ( tz)vk + ( 3) sxkvk) ] =0. (4.11)

To solve (4.11) iteratively, we define for each k:

g® =1 (4.12)

At At
W_uk—l——z— x: + (3) eMx, v, (4.13)

™D = (2[WExE 4+ 3x, W At + WHAD?)]
— 3[x; At + (A1)’ (€Y xqvf + 2xfv, + 2(40) € Mxiv, ]}/ (6x, 08 4. (4.14)

For At=0.01, Table III shows the resulting values of x,, v,, E, and ¢ through
k = 50. The results are comparable to those of Table I and each ¢ is of the form (4.5).
For the interested reader, the FORTRAN program used is available in Appendix B of
Greenspan [3].
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TABLE III

X

v

Energy

Zpsilon

1.0000000000
1.0100503356
1.0202026947
1.0304591388
1.0408217711
1.0512927381
1.0618742305
1.0725684845
1.0833777829
1,0943044561
1.1053508837
1,1165194958
1.1278127738
1.1392330524
1.1507835214
1.1624662252
1.1742840667
1.1862398077
1.1983362703
1.2105743393
1.2229629634
1.2354991569
1.2481880021
1.2610326506
1.2740353257
1.2872023239
1.3005340176
1.314034856%
1.3277083719
1.3415581749
1.3555879631
1.3698015207
1.3842027217
1.3987955323
1.4135840141
1,4285723243
1.4437447291
1.4591655865
1.4747793696
1.4906106597
1.5066641516
1.5229446574
1.5394571096
1.5562065654
1.5731982102
1.5904373617
1,6079294741
1.6256801425
1.4436951070
1.6619802579
1.6805416400

1. 0600000000
1.0101006714
1.0204054019
1.0309183454
1.0416437619
1.0525860210
1.0637496050
1.0751391127
1.086759246278
1.0984148978
1.1107109875
1.12305246338
1.1356450737
1,1484936847
1.1616039886
1.,1749816543
1.1886325124
1.2025625411
1.21467778893
1.2312848740
1.2460899866
1.2611998992
1.2766214702
1.2923617504
1.3084279900
1.3248276443
1.3415683811
1.3584580881
1.3761048796
1.3939171045
1.4121033547
1.4306724725
1.4494335403
1.4689959888
1.4B876940462
1.5089637488
1.5295892498
1.55046564509
1.5721762127
1054159720
1.616618Y:
1.6395644590]
1.6630098830
1. 6R6RA 73END
1.7114498757
1.7364709414
1.746204439346
1.788184537
1.8149061145
1.8400243678
1.8701556119

01466667
0.1666647
0166667
0.164667
0. 16666/
0. 146647
0168667
01646467
O 166667
01666867
0.16566646/
01666867
0166667
Q. 166647
0.1646467
0166667
0.164667
0.1664667
0.166667
G 1664647
0.1646667
0.166667
0.1666467
0.1466667
0.166667
Q166667
0:166667
0.1666467
0.166667
0166667
0.166667
0.166667
0.1466667
0.16464667
0.166667
0.166667
0.1646667
0.186667
O.166667
0. 166667
0.166667
0. 1666467
01466667
Q166667
0. 1466467
0. 1866667
G 1664667
0166667
0.1664667
0.1566467
0. 1648667

1.060000
1.006714
1,004748
0046783
0046817
006852
» 006888
006923
L0046959
006996
007032
007070
007106
007144
1.007181
1,00722
1.00725%
1.007297
1.007337
1,007377
1.007416
1.007456
1.007497
1.007537
1.007579
1.007619
1.007662
1.007704
1.007747
1.067789
1.,007832
1,007875
1.,007920
1.007964
1.008008
1,008054
1.008098
1.008144
1.008190
1.008236
1,008784
1.00833%0
1.008378
1.0084264
1.008474
1.008523
1.0080570
1.008622
1.008672
1.008722
1.008774
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5. REMARKS

From a scientific point of view, it is of value to apply both Methods I and II to any
particular problem, for this would provide the user with a relatively reliable check
and balance approach. Individually, Method I is relatively more expensive, since it
yields an error in both [4] position and velocity of order only (4f)’. However, the
conservation property is relatively independent of the convergence tolerance for the
Newtonian iteration. Method IT can, of course, be adapted to formulas of relatively
high accuracy. However, this can be done only with an increasing complexity in the
algebraic equation for & and the conservation property is only accurate to the
convergence tolerance used in the iteration.

It is interesting to note also that Method I extends to systems of particles in such a
fashion that conservation of energy, and linear and angular momentum can all be
conserved exactly as in the continuous case. To do this one need only proceed as
follows. For At > 0, let t, =k A4t, k=0, 1, 2...., and consider a system of particles P;,
i=1,2,3,.,n Let P; have mass m;, and, at time £,, be located at r; , with velocity
v; , and acceleration a, ,. In analogy with (3.1) and (3.2), assume that

Viks1 T Vi Tipyr—Tig

2 At

_Vikrt — Vig
=T

If F, , is the force acting on P; at time ¢, then force and acceleration are assumed to
be related by

Foo=ma; ;.

If F,, is a central, 1/r* force, like gravitation or Coulombic interaction, then the
arithmetic, conservative force formula is

or; gy 15 4)

F. —
ik .
Foaligr1 (it Tiest)

More generally (see, e.g., [4]), if P; interacts with the other n — 1 particles and the
force is attractive like 1/r® and repulsive like 1/r% then the arithmetic, conservative
force on P, is given by

n

G[3222 (rk i D]
= N $=0 \' ij,k" ij,k+1
F.r=m [mj ( -

’ iz i?j,_k1 rlijj.‘k1+ 1(rij,k + ik )
J#i
H[X 820 (rurfidi)]

r; +r, 1 —r;)] -
a—1.,.9—1 ) ( ik+1 ik Jok+1 J ]
P e Py + Tipean)
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Note, however, that the above formulation is both economical and convenient at
present only for the case where n is relatively small, such as may be the case in the
interaction of large, planetary bodies. Application to plasma simulations, in which
10* < n < 10, would be relatively impractical without specially designed computer
hardware.

It should be observed also that a number of other papers have been devoted to
numerical simulation with exact conservation (see, e.g., [6-8] and the references
contained therein). By and large, however, these efforts have been directed toward
conserving such quantities as mass, flux, charge, and momentum. Those directed at
conservation of energy have not conserved the toral energy of the continuous
equations being studied.

Finally, let us observe that both theoretical and practical limitations on the choice
of Ar which will assure the convergence of Newton’s method exist and are at present
under study. Though some particular results are known, no general results are
available as yet.
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