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Two distinctly different numerical methods are developed for solving the conservative initial 
value problem 2 =f(x), x(O) = a, 1(O) = ,K Both methods conserve exactly the same total 
energy as does the given differential equation. Computer examples are described and 
discussed. 

1. INTRODUCTION 

Physics is characterized by conservation laws and by symmetry [l]. Unfor- 
tunately, the application of numerical methodology in approximating solutions of 
initial value problems usually does not preserve either of these invariants. In this 
sense, the use of a computer destroys the physics of a dynamical model. 

We will show here how to conserve total energy when solving the nonlinear initial 
value problem 

I = f(x); x(0) = a, i(0) = p (1.1) 

on a computer. Moreover, the energy conserved will be exactly that of (1. I), not a 
new Lienergy” which is defined by the numerical method (see, e.g., Langdon [6]). 
Two distinctly different methods will be developed, one of which is completely 
conservative and symmetric, the other of which reveals how to convert any numerical 
method to an energy conserving one. 

2. PRELIMINARY CONSIDERATIONS 

For purposes of intuition and for later convenience in demonstrating structural 
analogies, let us recall first the proof that (1.1) conserves energy. 

Let particle P of unit mass be in motion along the X axis. Let the Newtonian 
dynamical equation of motion and the initial data be given by (1.1). At any time 
t = t*, let P be located at x(t*) =x* and have velocity i(t*) = t)(t*) = u*. Define 
the work W done by force f(x) during the time 0 < t < t * by 

w= I :‘ f(x) G!x. (2.1) 
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Then, 

so that 
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W=K(u”) -K(P), 

where K is kinetic energy. Of course, (2.2) is valid for any f(x). 
Now, for a particularf(x), let 4(x) be any function such that 

- g = f(x). 

(2.2j 

(2.3 j 

The function q(x) is called a potential function for&). Then, from (2.1) and (2.3), 

w = -(+4(x*) + $qaj. (2.4 j 

in which 4 is now called the potential energy. 
Elimination of W between (2.2) and (2.4) yields 

K(v*) + 4(x*) =Kt.p) + d(u) (2.5 j 

which is the classical law of conservation of energy. 

3. NUMERICAL METHOD I 

The first numerical method is developed from the following observation. Conser- 
vation law (2.5) contains $(x) explicitly, but notf(x). Thus, if a numerical method is 
to conserve exactly K(J) + Q(a), th e method should incorporate exact@ the same 
potential function 4 as defined in Section 2. Indeed, it need not utilize exactly the 
same f(x) given in (1.1). With this in mind, we proceed as follows. 

For At > 0 and t, = k At, k = 0, 1, 2 ,..., let x(tk) = xk, u(t& = Us, a(t,) = ak; Let 
p(x) satisfy (2.3). Then, assume 

l’ktl + Ok =xk+l -xk 

2 At 

ak = l’kt 1 - L’k 

At ’ 
(3.2) 
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Define f@,J = fk by 

(3.3) 

and approximate dynamical equation (1.1) by 

which, by the assumption of unit mass, reduces to 

fkxak. (3.4) 

Let us proceed now as if -vkf i fx, in (3.3). Whenever necessary, we will show 
how to treat the case xk+i = xk. Hence, (3.1)-(3.4) are equivalent to 

vk+l+vk=xktl--~k 

2 At 

‘ktl - vk = _ #cxk+ 1) - $txk) 

At xk+l -xk 

(3.5) 

(3.6) 

Equations (3.5), (3.6) define xk+,, vk+i implicitly in terms of xk, vk. The solution of 
(3.5), (3.6) for each of k = 1,2 ,..., from the initial data x,, = u, vO = j3, constitutes the 
numerical solution. 

Let us show first that (3.1~(3.4) conserve exactly the same energy as given in 
(2.5). In analogy with (2.1), let 

n-1 
wn= x (xk+l-xk)fk. 

k=O 
(3.7) 

Then 
n-1 n-1 

Iv,?= c (*ktl-*k)ak= y (xk+l-xk) 
k=O k:O (““Yl7 “*I 

n-1 
= y (xk+l-xk) cvktl 

kz0 At 
-v,)= -x- ;; (“‘+;’ vk) (ok+1 - vk) 

n-1 

=f r (v;+l 
k=O 

- vi) = K(v,) - zqv,). 

Thus, 

in analogy with (2.2). 

wn = W,) - m), (3.8) 
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On the other hand, (3.7) implies 

n-1 

wn= F- (xktl-xk) 
!ok+ 1 I- #J(Xk> 

- 
kc0 Sk+ 1 - xk 

n-1 

= r (-#@k+ 1) + #(-‘k)) 
k:O 

= -4(.%> + K%), 

in complete analogy with (2.4). 
Elimination of IV,, between (3.8) and (3.9) implies the energy conservation law 

K(u,,) + 4(x,) = W) + $(a), II = 0, 1, 2, 3 . . . . . (3.10) 

Since the right sides of (2.5) and (3.10) are identical, it follows that the numerical 
method conserves exactly the same total energy as does (1.1). 

In the case when xk+ r = xk, then #(xk+ r) - #(xk) = 0, so that there would be no 
change in the final summation which led to (3.9). Use of the second formula in (3.3j 
to calculate PVn would have required the alternative expression 

which also is zero, yielding again no change in the final summation. Thus, conser- 
vation law (3.10) is valid in all cases. 

Let us show next how to solve (3..5), (3.6) iteratively by means of Kewton’s 
method [2]. For fixed k, if (3.5) and (3.6) are rewritten as 

At 
++I=-yk++L’k+,+@ 

c /~+l=~k-(‘~) 

then the Newtonian recursion formulas to be used are 

(3.6’) 
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with the initial choice XL’: r, L~~~~, for the iteration taken to be 

xp),=xxk+cl, z)~~u:=vk+c2, (3.13) 

in which C,, C, are constants. If the division by (~p++r” - xk) in (3.12) can be, and 
has been, carried out, then the singularity x k+ i = xk in (3.6’) has been removed, in 
which case we will always choose C, = C? = 0 in (3.13). This will be illustrated in 
Example 1. If the division by (xp++,” - XJ in (3.12) calznot be carried out, but still 
xr:i” # xk, then one must choose C, # 0 in (3.13). This will be illustrated in 
Example 2. 

We now give two examples which not only illustrate the method, but also show 
clearly that convergence. is always to the correct phqwical solution, even when system 
(3.5), (3.6) has more than one solution. 

EXAMPLE 1. Consider the initial value problem 

Choosing 

and noting that 

f = x2, x(0) = 1,1(O) = 1. (3.14) 

(3.15) 

we find that 

l =- x 

Xk+l -xk 3( 

(3.16) 

(3.17) 

so that the system to be solved is 

At 
Xk+L=Xk+~(vk+,+Vk) (3.18) 

At 
vk+,=vk+3(X:+~+.~k+,Xk+X:). (3.19) 

The Newtonian iteration formulas, for fixed k, are then 

cnt 1) 
xk+l =xk+~(vl;~l +vk) (3.20) 

up;,” = Vk + $ ((xp++11))2 + (x&y’)(x,) + (Xk)?] (3.2 1) 

x(w - 
ktl -xky 

Ll(o) - 
ktl- ‘km (3.22) 
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In applying (3.20)-(3.22), it will be convenient to know, a priori, how many 
solutions system (3.18), (3.19) has. For this purpose, note that substitution of (3.19) 
into (3.18), to eliminate u k+l, yields the quadratic equation 

6 
xk + x + 

i 
= 0. (3.23) 

Since x0 = 1, u0 = 1 are known, let us, for simplicity, consider (3.23) with k = 0. An 
analogous discussion holds for arbitrary k. Hence, k = 0, (3.23) reduces to 

x;+ (1-+-).X,+(1+&+-$ =o. 

Equation (3.24) has 0, 1, or 2 solutions according as the discriminant D(At) is less 
than, equal to, or greater than zero, where 

D(At)= (1-$&4(1+-&r+;). (3.25) 

Since limdr+O D(t) = co, there exist two solutions for all sufficiently small At. To ix 
precise, let us solve D(At) = 0. This equation is equivalent to the quadratic equation. 

(AL)~ + 8(AQ3 + 12(A@ - 12 = 0. (3.26) 

Equation (3.26) has exactly one real, positive root At, and this is the only physically 
correct solution of (3.26). This solution is 

- 

At=-2 + 
- ljlqm + d(8 - qm) + 4(8/i/8 - $23 + (4 + qm)y2) 

2 

- 0.79490525. (3,271 

For At less than that prescribed by (3.27), Eq. (3.24) has two real roots, and these are 
given by 

x 
1 

= (6 - (At)‘) f \i((AQ2 - 6)’ - 4(At)‘((At)? + 6At + 6) 
2(At)’ 

(3.28) 

If one chooses the positive sign in (3.28), then lima,,, ?ci = +co, which is incorrect 
physically. So, one must choose the negative sign to get the correct root. For 
At = 0.01, the correct physical approximation, to five decimal places, is 

x* - 1.01005, (329j 

while the incorrect solution is x, - 59998. 
Table I shows the computer solutions of (3.18), (3.19) by use of (3.20), (3.21) with 
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TABLE I 

X v 2nergy 

1.0000000000 1 .oooooooooo 
1.0100505042 1.0101008418 
1.0202030372 1.0204057513 
1.0304596603 1.03091888C?7 
1.0408224772 1.0416444964 
1.0512936345 1 t 05X869623 
1.0618753232 1.0637507632 
1.0725697795 

1.0943061747 

1.3698101666 

1.1053528241 
1.1165216650 

1.3842118136 

1.0833792864 

1.1278151790 
1.1392359012 
1.1507864211 
1.1624693840 
1.1742874929 
1.1862435097 
1.1983402570 
1.2105806199 
1.2229675471 
1.2355040537 
1.2481932220 
1.2610382042 
1.2740422236 
1.2872085775 
1.3005406384 
1.3140418570 
1.3277157637 
1.3415659713 
1.3555961773 

1.3988050850 1.4690087122 
1.4135940429 1.4887828666 
1.4285828471 1.5089779775 
1.4437757584 1.5296042798 
1.4591771414 1.5506723163 
1.4747914677 1.5721929490 
1.4906233193 1.5941773700 
1.5066773917 1.6166371137 
1.5229584976 1.6395840686 
1.5394715704 1.6630304906 
1.5562216680 1.6869890160 
1.5732139764 1.7114726753 
1.5904538143 1.7364949077 
1.6079466368 1.7620695763 
1.6256980396 1.7882109836 
1.6437137639 1.8149338879 
1.6619997010 1.8422535203 
1.6805618966 1.8701856026 

1.0986167710 

1.0751404983 

1.1107131220 

I.4306838116 

1.1230550415 
1.1356477675 

1.4496455771 

1.0867608866 

1.1484966777 
1.1616072945 
161749852893 
1.1886364874 
1.2025668731 
1.2167825944 
1.2312899687 
1.2460954883 
1.2612058258 
la2766278403 
1.2923685837 
1.3084353066 
1.3248354652 
1.3415767283 
1.3586669843 
1.3761143484 
1.3939271707 
1.4121140439 

0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 

0.166667 
0.166667 

0.166667 

0.166667 
0.166667 
0.166667 

0.16666'7 

0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
0.166667 
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At = 0.01 up to k = 50, which are typical of the more extensive computations carried 
out. Note that, to ten decimal places, 

*I - 1.0100505042, (3.35) 

which is in complete agreement with (3.29). Indeed, for each k? the computer method 
converges to the correct physical solution, even though two solutions exist. Note also 
in Table I that the total energy is always constant and equal to d (to the number of 
decimal places printed). 

For the interested reader, the FORTRAN program used is available in Appendix A 
of Greenspan [3]. 

EXAMPLE 2. Consider the initial value problem 

R = -sin .)c, x(0) = I3 i(0) = 0, (3.3 1) 

for which 

4(x) = -cos x 

E = {vi - cos x0 = 0. 

The system to be solved for each k is 

At 
xk+ 1 = xk + T (L’k+ I + L’k) (3.32) 

L!~+, = ck + (At) 
cos(xk+ ,) - CDS Xk 

Xk+l -x: . 
(3.33) 

This time, unlike Example 1, the singularity x. k+ r = ?ck in (3.33) is not removable by 
division. The iteration formulas to be used are, then, 

up++‘,” = vk + (At) 
cos(x~++~‘)) - cos Xk 

tn+ Ii 
-‘ik+ 1 - .Yk 

With At = 0.01, the method converges to the correct physical solution and Table II 
gives the resulting positions, velocities, and energies through k = 50, which are 
typical of the more extensive calculations which were carried out. Note, again, that 
the energy is conserved exactly. 
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TABLE II 

X v dnergy 

1.5707963268 
1.5707463260 
1.5705963268 
1.5703463268 
1.5699963268 
1.5695463269 
1.5689963270 
1.5683463273 
1.5675963279 
1.5667463291 
1.5657963311 
1.5647463344 
1.5635963395 
1.5623463473 
1.5609963587 
1.5595463750 
1.5579963976 
1.5563464285 
1.5545964700 
1.5527465246 
1.5507965957 
1.5487466868 
1.5465968025 
1.5443469475 
1.5419971276 
1.5395473494 
1.5369976202 
1.5343479483 
1.5315983431 
l.5287488148 
1.5257993752 
1.5227500371 
1.5196008147 
1.5163517236 
1.5130027810 
1.J095540056 
1.5060054181 
1.5023570408 
1.4986088980 
1.4947610161 
1.4900134235 
1.4867661511 
1.4826192320 
1.4783727020 
1.4740265993 
1+4&95809&49 
1.4650358430 
1.4603912804 
le4556473274 
1.4508040372 
1.4458614667 

0.0000000000 
-0.0100000000 
-0.0199999999 
-0.0299999994 
-0.0399999974 
-0.0499999920 
-0.0599999803 
-0.0699999575 
-0.0799999174 
-0.0899998514 
-0.0999997486 
-0.1099995955 
-0.1199993755 
-0.1299990687 
-0.1399986516 
-0.1499980969 
-0.1599973729 
-0.1699964436 
-0 1799952681 . 
-0~1899938004 
-0.1999919892 
-0.2099897773 
-0.2199871018 
-0.2299838932 
-0.2399800756 
-0.7499755662 
-0.2599702750 
-0.2699641044 
-0.2799569491 
-0.2899486958 
-0.2999392228 
-0.3099283996 
-0.3199160868 
-0.3299021358 
-0.3398863886 
-0.3498686769 

-0.4296326306 

-0.3598488228 
-0.3698266376 
-0.3798019221 

-0.4395879134 

-0.3897744660 
-0.3997440479 
-0.4097104346 
-0.4196733811 

-0.4495389476 0.000000 
-0.4594854381 0.000000 
-0.46942707hb 0.000000 
-0.4793635413 0.000000 
-0.4892944969 0.000000 
-0.4992195939 0.000000 

0.000000 
0.000000 
0.000000 
0 .oooooo 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
o,oooooo 

0.000000 

0.000000 
0.000000 

0.000000 

0 * 000000 
0 * 000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
o,oooooo 
0.000000 
0.000000 
o*oooooo 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
o*oooooo 
0.000000 
0.000000 
0.000000 
0.000000 
o*oooooo 
0.000000 
0.000000 
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4. METHOD II 

We will show now how to convert any popular numerical method for solving (1.1) 
so that it is energy conserving. For illustrative purposes, consider a Taylor series 
method [S], say, for simplicity, of second order, 

(At)2 . . 
xk+ 1 = xk + (At) uk + ~ x 

2 k 

(At)’ . 
ilk+, = uk + (At),f, +-.u 

2 k’ 

(4.1) 

(4‘2) 

The error in each of (4.1) and (4.2) is of order (Arj3. We first modify these so that 
(4.1 j has an error of order (At)4. Thus, 

(At)’ . . . ~‘~+~=~l~+(dt),~~+~?~ 
2 k 

(4.4) 

Each final terms in (4.3) and (4.4) now has the same derivative of X, that is. Y2, 
Finally, we modify (4.3) and (4.4) by introducing a parameter E, where 

E = 1 + O(At). (4.5) 

in such a fashion that we have 

Xk+ 1 = -xk + (At) Ck + - 
(At)’ ~ I (W3 c;l 

2 k 6 -k 

(At)’ . . . ~‘~+,=u~+(At)Z~+-cx 
2 k’ (4.7) 

Our problem now reduces to the determination of E so that E is invariant. Let us 
show how easily this is done by considering, again, Example 1 of Section 3. 

Consider the initial value problem 

2 =x2, x(0) = 1, i(O) = I. (4.8 j 

For this problem, formulas (4.6) and (4.7) reduce to 

(At)’ 
xk+,=xk+(At)uk+- 

2 

vk+ 1 = uk + (At) xi + (At)’ EX/, uk. (4.10) 
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We will determine E so that the change in energy, AE, = Ek+, - E,, is always zero. 
Thus, since 

AEk=Ek+,-Ek 

1 
=- 

2( 

2 
‘k+l -Q + 

substitution of (4.9) and (4.10) and setting dEk = 0 yields 

3[(At) Xi + (At)3~“~;v; + b;u, + 2(At) Ex,& t 

+3x,At v,+~x;+~c~~v~)~ 
( 

+ (At)2 ,k+~+@$ykuk)3] = 

To solve (4.11) iteratively, we define for each k: 

E(O) = 1 
w=v,+;x: +7 (AV pXkvk 

0. (4.11) 

(4.12) 

(4.13) 

cc”+‘) = {2[W(3x; + 3x, WAt + W2(At)‘)] 

- 3 [x;: At + (At)3(dn))2 ’ ’ xkvk + 2x;v, + 2(At)2d”‘x;t1k]~/(6xku; At). (4.14) 

For At = 0.01, Table III shows the resulting values of xk, vk, E, and E through 
k = 50. The results are comparable to those of Table I and each E is of the form (4.5). 
For the interested reader, the FORTRAN program used is available in Appendix B of 
Greenspan [3]. 
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TABLE III 

X ‘J Energy Epsilan 

1.0000000000 
1.0100503356 

1.0202026947 
1.0304591388 
1.0408217711 

1.0512927381 
1.0618742305 
I.. 0725684845 

1.0833777829 
1.0943044561 
1.1053508837 

1.1165194958 
1.1278127738 
1.1392332526 

1.1507835214 
1.1624662252 
1.1742840667 

1.1662398077 

1.1983362703 
1.2105763393 

1.2229629634 
1.2354991569 
1.2481880021 
1.2610326506 
le2740363257 
1.2872023239 
1.3005340176 
1+3140348569 
1.3277083719 
1.3415581749 
1.3555879631 
1.3698015207 
1.3842027217 
1.3987955323 
1.4135840141 
1.4285723263 
1.4437647291 
1.4591655865 
1.4747793696 
1.4906106597 
1 .5066641516 
1.5229446574 
I .539457109h 
1 .5562065654 
1+5731982102 
1.5904373617 
1 .6079?94741 

1 .A256801425 
1.6436951070 
1.. 6619802579 
1.6805416400 

1.0000000000 
1.01010067t4 

1.020405401 Y 
1.03091R~3454 
1 .0416437619 
1 . 05x860?10 
1.06374YhOZO 
1.07~139112-7 

l.O867:j9’.?6?8 1 I 
I*0986148978 
1.1107109875 
l.l230;2633H 
1 * 13:&s4;0737 
1.1484936847 
1.1616039886 
1.1749816563 
‘l+lRR6325126 
1, ~O?rj6'I~"41 1 L. LIJ 

1.2167778893 
lb2312848740 
1.2460899866 
1.2611998992 
1.2766214702 
I.. 2923617504 
1.3084279900 
I. a 3248276443 

1~3415683811 
1.3586580881 
1.3761048796 

1.3939171045 
1.4121033547 
1.4306724725 

1.4496335603 
1.4689959888 
1.4887694062 

I 15089637488 
1 .5295893498 
1 t 5506564509 

1 I 5 7 2 .I 7 6 2 1 2 7 
1 .!‘,941597255 
I .6166185~24 
1. hJ9’;6449OJ 

1 :71 144987’>7 

1 I. )9414 
1 . IA:‘i)44ds‘:.ih 

1 * 7HH1 H453T/ 

1.007662 
1 IO07704 
1.007747 
1.007789 
1.007832 
1.007875 
1.007920 
1.007964 
I. 008008 

1.008034 
1.008098 
l*OOH144 

1.006190 
t.008236 
1 9 OOHP84 
1 .0083;ii) 
1.008378 
i.OO842h 
1.008474 
1 .008533 
I . oOPri7:’ 
1 . OOHh:!:.’ 

O.lhf31667 
0. I A6667 
0, l.hhh67 

0, lXhA67 
0.1 hhhh 7 
0. 166667 
0. lhbh67 
O.lhhth7 
0 I ! 66667 

i).:rih6hi’ 
I .814YO611.4:; 0,?66667 1.008672 
1 . 84?:..‘24;5h78 0. lh’a667 1 * 008722 

0 1 ihhAih7 1 *oooooo 
O.JXh667 1 .006714 
O.lcihhh7 I sOOti 
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0.165667 I .00718: 

0. !.666h’/ 1 a 0072:10 
0,166667 1 .007259 

0 1166667 1. e 007297 

0 m 166667 11007337 
0 * 166667 1.007377 

0. :66667 I.007416 
0. i66667 1.007456 
0.1.66667 1* 007497 

0.166667 1.007537 
0.166667 1‘ 007579 
0.166667 1 .007619 

0.166667 
0.166667 
0.166667 
0.164667 
0.166667 
0+166667 

OS166667 
0 e 166667 
0.166667 

0. IS6667 
0 / 166667 
O,lhh667 

0. tsbsh7 I. L 00.8 774 
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5. REMARKS 

From a scientific point of view, it is of value to apply both Methods I and II to any 
particular problem, for this would provide the user with a relatively reliable check 
and balance approach. Individually, Method I is relatively more expensive, since it 
yields an error in both [4] position and velocity of order only (At)3. However, the 
conservation property is relatively independent of the convergence tolerance for the 
Newtonian iteration. Method II can, of course, be adapted to formulas of relatively 
high accuracy. However, this can be done only with an increasing complexity in the 
algebraic equation for E and the conservation property is only accurate to the 
convergence tolerance used in the iteration. 

It is interesting to note also that Method I extends to systems of particles in such a 
fashion that conservation of energy, and linear and angular momentum can all be 
conserved exactly as in the continuous case. To do this one need only proceed as 
follows. For At > 0, let t, = k At, k = 0, 1, 2 ,..., and consider a system of particles Pi, 
i = l5 2, 3,..., n. Let Pi have mass mi, and, at time t,, be located at ri,k with velocity 
v~,~ and acceleration a, k , . In analogy with (3.1) and (3.2), assume that 

Vik+l+Vik rik+l-rik 

’ 2 ‘= ‘At ’ 

‘i kt 1 - ‘i,k aik= ’ 
At ’ 

If Fi,k is the force acting on Pi at time t,, then force and acceleration are assumed to 
be related by 

Fi.k = miai.k. 

If Fi,k is a central, l/r2 force, like gravitation or Coulombic interaction, then the 
arithmetic, conservative force formula is 

Fi,k = 
‘cri,k+ 1 + ‘i,k) 

ri,kri,k+l(ri,k + ‘i,k+ 1) ’ 

More generally (see, e.g., [4]), if Pi interacts with the other n - 1 particles and the 
force is attractive like I/#’ and repulsive like l/r4, then the arithmetic, conservative 
force on Pi is given by 
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Note, however, that the above formulation is both economical and convenient at 
present only for the case where n is relatively small, such as may be the case in the 
interaction of large, planetary bodies. Application to plasma simulations, in which 
10’ < 17 < 106, would be relatively impractical without specially designed computer 
hardware. 

It should be observed also that a number of other papers have been devoted to 
numerical simulation with exact conservation (see, e.g., ]6--81 and the references 
contained therein). By and large, however, these efforts have been directed toward 
conserving such quantities as mass, flux, charge, and momentum. Those directed at 
conservation of energy have not conserved the total energy of the continuous 
equations being studied. 

Finally, let us observe that both theoretical and practical limitations on the choice 
of At which will assure the convergence of Newton’s method exist and are at presenr 
under study. Though some particular results are known, no general results are 
available as yet. 
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